Scalar transport in random cylinder arrays at moderate Reynolds number

نویسندگان

  • BRIAN L. WHITE
  • HEIDI M. NEPF
چکیده

This paper theoretically describes and experimentally verifies two mechanisms leading to longitudinal dispersion of a passive tracer in a random array of circular cylinders. We focus on moderate Reynolds numbers of order 10–1000, specifically the range characterized by unsteady cylinder wakes. In this regime, two mechanisms contribute to dispersion, each associated with a distinct region of the cylinder wakes: (i) the unsteady recirculation zone close to each cylinder, and (ii) the velocity defect behind each cylinder, which extends downstream of the cylinder over a distance of the order of the cylinder spacing. The first mechanism, termed vortex-trapping dispersion, is due to the entrainment of tracer into the unsteady recirculation zone, where it is momentarily trapped and then released. A theoretical expression for this dispersive mechanism is derived in terms of the residence time and size of the recirculation zone. The second mechanism is due to advection through the random velocity field created by the random distribution of the wake velocity defect. We derive an expression for the defect behind an average cylinder, and show that it decays owing to array drag over a length scale called the attenuation length, which is of the order of the cylinder spacing. The superposition of the wake defect behind each cylinder creates the random velocity field. Theoretical predictions for dispersion agree very well with observations of tracer transport in a laboratory cylinder array, correctly capturing the dependence on array density and Reynolds number. The laboratory studies also document a transition in small-scale mixing at cylinder Reynolds number ≈ 200. Below this limit, individual filaments of tracer remain distinct, producing significant fluctuations in the local concentration field. At higher Reynolds number, cylinder wakes contribute sufficient turbulence to erase the filament signature and smooth the tracer distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coord...

متن کامل

Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers

Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...

متن کامل

Investigation of Drag Coefficient at Subcritical and Critical Reynolds Number Region for Circular Cylinder with Helical Grooves

Drag reduction of an object is the major concern in many engineering applications. Experimental studies have been carried out on circular cylinder with helical grooves in a subsonic wind tunnel. Different cases of helical grooves with different pitches, helical groove angles and number of starts of helical groove on circular cylinder are tested. Experimental results show the drag coefficient is...

متن کامل

Simulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar

Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...

متن کامل

Simulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex

This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003